In [3]: df[df['ids'].str.contains("ball")] # removes all rows where 'ball' not in row['ids']
Out[3]:
ids vals
0 aball 1
1 bball 2
3 fball 4
df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])),
... index=['mouse', 'rabbit'],
... columns=['one', 'two', 'three'])
>>> df
one two three
mouse 1 2 3
rabbit 4 5 6
# select columns by name
df.filter(items=['one', 'three'])
one three
mouse 1 3
rabbit 4 6
# select columns by regular expression
df.filter(regex='e$', axis=1)
one three
mouse 1 3
rabbit 4 6
# select rows containing 'bbi'
df.filter(like='bbi', axis=0)
one two three
rabbit 4 5 6
1
2
3
4
# filter rows for year 2002 using the boolean expression
>gapminder_2002 = gapminder[gapminder['year']==2002]
>print(gapminder_2002.shape)
(142, 6)